
2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) TECHNICAL SESSION

AUGUST 12-14, 2014 – NOVI, MICHIGAN

The Business Case for Model-Based

Software Development

Ron Lannan
LHP Software

Columbus, IN

ABSTRACT
Use of Model-Based Design (MBD) processes for embedded controls software Development has been purported for nearly the

last decade to result in cost, quality, and delivery improvements. Initially the business case for MBD was rather vague and

qualitative in nature, but more data is now becoming available to support the premise for this development methodology. Many

times the implementation of MBD in an organization is bundled with other software process improvements such as CMMI or

industry safety standards compliance, so trying to unbundle the contributions from MBD has been problematic. This paper

addresses the dominant factors for MBD cost savings and the business benefits that have been realized by companies in various

industries engaged in MBD development. It also summarizes some key management best practices and success factors that have

helped organizations achieve success in MBD deployment.

INTRODUCTION
Model-Based Design (MBD) is a software development

process in which the implementation, verification, and
documentation of software features flow directly from a
single graphical model of the software behavior. While the
use of MBD has grown dramatically over the last 10 years,
quantitative return on investment (ROI) data is nearly non-
existent in the literature. While some cost savings data does
exist, it is predominantly based on case studies submitted by
companies to support the marketing efforts of MBD tool
suppliers. The case studies typically address the cost and
cycle time savings in the development process, but fall short
in capturing the full software life cycle cost benefit of MBD.
Arguably, the cost of quality savings due to lower in-use
product defect rates, enabled by MBD, could easily dwarf
the cost savings in development. This point is largely
ignored in most studies. As a result, the total savings due to
using the more robust MBD process are likely understated.

As we look at the MBD cost savings data and studies in
the literature there is much variability in the projected
savings. This is understandable for several reasons. First, the
starting point for software process maturity can vary widely
across companies deploying MBD. As a result, savings are
likely to be much greater for companies starting from a
lower CMMI capability level because MBD can inherently
improve the software process and enable more continuous
and seamless design, code, and testing. Second, the
existence of human resources experienced in model-centric
development will vary widely among companies. And lastly,
there is much variability in the choice of implementations,
with some being more suited to MBD than others. In
general, system implementations that can be described
mathematically and are physics-based are best suited for
MBD. Most often, ordinary differential equations and
algebraic expressions are used to define the input to output
relationships of the system outputs and components.

THE MBD COST SAVINGS PREMISE
The dominant premise for MBD cost savings is two-fold:

the elimination of errors early in the design stage and the
efficiency and effectiveness of auto-code generation and
model-driven testing. While there are many other collateral
benefits of MBD, these two are the primary drivers of the
business case argument for MBD.

The relative cost to fix an error in any system development
is shown in Figure 1. [3]

Figure 1: Defect cost penalty.

This chart shows the later in the process defects are caught,
the more expensive it will be to fix them. Because MBD
provides an executable model that can be tested early in the
design cycle, more requirements errors can be avoided and
the software model can also be used to provide more
effective, intermediate, and end-to-end testing of the
software system. Note that the cost of finding a problem
once it is deployed is almost two orders of magnitude higher
than if the problem was caught early in the design phase.
Also, catching problems in the requirements phase versus
the test phase has an order of magnitude cost advantage
during software and system development.

The relative shift in where problems are found for MBD is
shown in Figure 2. [5] Note that when we compare the MBD
process to Software Engineering Institute (SEI) industry
averages, most defects are caught in the requirements and
design phases as opposed to the software unit test and
integration phases of the non-MBD process. This positive
shift in early defect discovery results in less rework and also
shortens the development cycle time.

If we look at the process phases, as shown in Figure 3 [5],

we can see that the MBD process results in over 50%
savings in the test phase and over 30% savings in the
requirements phase. There is roughly a 10% savings in
coding due primarily to auto-code generation. Auto-code
generation generally eliminates errors from hand coding and
is able to be easily re-targeted to different hardware
platforms.

Other collateral benefits from the MBD process are

identified thoroughly in another technical brief from LHP
Software. [2]

MBD SAVINGS DATA

Research of the literature on MBD cost savings did not
reveal any analysis that specifically showed the MBD cost
advantage from a well-documented, bottom-up cost baseline.
Most data was generalized and based on case studies
associated with MBD tool suppliers. However, there was a
study conducted [4] that was a macro-level, top down
analysis of MBD savings across several embedded industry
verticals. This analysis was based on responses from more
than 500 embedded developers covering five market
segment verticals: telecom/datacom, auto/transportation,
industrial automation, medical, and military/aerospace. In
his study, Krasner segmented responses and data between
MBD and non-MBD developers. Interestingly, his findings
showed that the relative development cost savings for MBD
ranged from near 0 for industrial automation to as much as
95% for telecom/datacom. In the middle was auto/
transportation with a 39% savings and medical with a 79%
savings. His findings also cited the lack of cost savings for
industrial automation was likely due to the continued heavy
reliance on physical prototyping and the lack of complexity
in the applications. The data on military/aerospace wasn’t
statistically valid and it was noted that the military spends
less on development tools than does industry, which is one
factor in the slow adoption of MBD by this segment.

A recent report coming from the automotive sector [1]
explored the effects of MBD on cost, cycle time, and quality.
Additionally, the report identified the key factors used by
companies to optimize the economics of their MBD process.
A summary of the cost and time savings analysis from this
study is shown in Figure 4.

Figure 2: Defect shift pattern with MBD.

Figure 3: MBD savings by phase.

As seen from the chart, the cost and time are higher in the

descending part of the V diagram (largely due to
frontloading with activities like rapid controls prototyping)
but lower in the implementation through verification phases.
Overall this study showed an average cost savings of 27%
and an average cycle time savings of 36% when considering
the entire V diagram. However, there were some companies
that showed an increase in cost when using MBD. This was
largely attributed to companies with less than one year of
experience.

The study also analyzed the top three factors that most
influenced the cost savings. Companies that possessed high
values in all three categories were able to achieve the highest
cost savings – roughly 40%.

The factors are:
• A high degree of function modeling for the entire

software system and, consequently, a high degree of
generated code

• Intensive function model testing
• High capability of the employees engaged in MBD as

well as software engineering.

MBD BUSINESS PRACTICES

In order to maximize success in deploying an MBD
process there are several key practices that management
should consider. This comes from the author’s experience in
leading a large controls organization in the deployment of
MBD and product line architecture in a $20 billion
corporation.

Identify the problems you are trying to solve. These

could range from trying to improve software quality,
increase productivity/capacity, improve reuse through a
product line architecture approach, hit release dates more
predictably, or enable worldwide distributed software. With
a prioritized list of problems one can then identify which
problems can best be addressed by MBD, process
improvement, or other improvement based methods such as
Six Sigma or product line architecture approaches.

Solicit the help of an experienced outside company to
help benchmark your current process and determine how an
MBD approach could be sculpted to fit within your current
organizational systems. Keep in mind that companies that
have no experience with MBD usually do not benefit from
MBD within a year or two of deployment. This is due
primarily to lack of experience and knowledge on how to
avoid the pitfalls.

Ensure that the MBD improvement initiative is a major

thrust of the Chief Technical Officer’s strategic plan, and
establish visible measures to show progress against your
deployment plan. Also, ensure that you have developed a
comparative cost study of the existing and new MBD
process to identify where the savings will be realized.

Start with a pilot production project. The project should

be selected so as to minimize financial risk in the event of
schedule or quality issues with the pilot product launch.
Lessons learned from the pilot project will prove invaluable
and allow you to identify bottlenecks in the process, tools, or
training that will be required before you move to more
widespread applications. Also, it is important to select pilot
project team members that have a passion for making MBD
a success and have the requisite training.

Ensure that your MBD software deployment leader has

the passion, energy, courage, and conviction to knock
down barriers, effectively engage the organization, and
communicate up and down to reinforce the strategic vision
and tactical initiatives. This person is likely the difference
between success and failure of the MBD initiative. It is also
important that this person has a sound industry and
technology perspective and participates in external forums
that continually validate your company’s technical direction.

Don’t underestimate the ‘fight or flight’ risk with

software engineers. The shift from hand-coding to auto-
coding poses a threat to many software engineers. Some will
resist and leave the organization, some will adapt and learn
to become architects and software integrators, and others
will embrace it and provide new ideas and system-level
thinking given the higher level of abstraction afforded by
MBD approaches. This MBD skill mix shift will certainly
require you to re-evaluate your future mix of controls,
systems, software, and test engineer needs.

Figure 4: MBD cost and time savings by phase.

THE LHP COMPETITIVE ADVANTAGE
 LHP Software was a pioneer in the adoption of MBD in

the automotive industry and continues to be heavily engaged
with model based design and development for a variety of
customers. We have employees experienced with senior
management leadership in MBD deployment within multi-
national companies, controls and systems engineers with
both plant and controls modeling experience, software and
test engineers skilled in the use of MBD processes and
toolsets, and alliance partners such as National Instruments
who possess products and capabilities to make modeling and
function testing a powerful tool in your MBD arsenal. In
examination of the three keys to achieving cost savings near
40%, LHP Software is uniquely positioned to work with
companies to successfully implement these key MBD
attributes throughout their organization. LHP Software
provides expertise in function model creation and function
model testing, as well as experienced technical and
management consulting in MBD processes, which enables
companies to optimize their investments in MBD.

CONCLUSIONS
 The business case for MBD is coming to a clearer focus

and more industry verticals are realizing the savings possible
with MBD software development approaches. Some
companies are successful in MBD deployment while others
are not. The difference lies in being able to avoid the pitfalls,
embracing a high degree of function modeling of the system,
exploiting the back-end of the V model with intensive
function model testing, and utilizing experienced technical
and management resources to guide the MBD start-up
experience.

REFERENCES

[1] Broy, M. K. (2011, March 03). Model-Based Software
[2] Development - Its Real Benefit. EE Times Europe.
Fraser, S., Fenstermacher, D., & Doyle, C. (2012).

TheBenefits of Model Based Design. Columbus, IN: LHP
Software, LLC.

 [3] King, T., & Marasco, J. (2008). What is the Cost of a
Requirement Error?

[4] Krasner, J. (2010). Comparing Embedded Design
Outcomes With and Without Model-Based Design.
Embedded Market Forecasters.
[5] Lin, J. (2011, May 25) Measuring Return on

Investment of Model Based Design. EE Times.

